
Master’s Thesis in Computer Science
Uppsala University, 20 p

2007-03-27

Development of a Prototype for JDF Enabled
Software

Ola Stering
2007-03-27

Abstract
The goal of this thesis project is to develop a prototype for an application that can act as a
reference for other developers wishing to implement JDF-support in their software. It is
required by CIP4 that the prototype is implemented in Java and supports CIP4’s Base
ICS. The thesis project involves analyzing the problem domain, gathering detailed
requirements, object-oriented modeling, and implementation. Emphasis is placed on a
modular application design and an iterative development approach. This thesis explains
the design and architecture including programming decisions for such a software
application. It provides a detailed overview of the Elk project, its design and
implementation strategies.

Keywords: JDF, software development, print production workflow.

Supervisors: Claes Buckwalter, Rainer Prosi
Examiner: Mikael Pettersson

2 (57)

3 (57)

Table of Contents
ABSTRACT .. 1
TABLE OF CONTENTS ... 3
LIST OF FIGURES.. 6
1. INTRODUCTION... 7

1.1. PROBLEM STATEMENT.. 7
1.2. GOAL ... 7
1.3. METHOD .. 7
1.4. CONVENTIONS.. 8
1.5. ACRONYMS .. 8
1.6. DISPOSITION... 9

2. JDF AND CIP4.. 10
2.1. CIP4... 10
2.2. JDF .. 10

2.2.1. Structure ... 11
2.2.2. Workflow... 12
2.2.3. Roles ... 13
2.2.4. JMF... 14

2.2.4.1. Subscription Management.. 15
2.2.5. Queue Management.. 15

2.3. ICS DOCUMENTS ... 15
3. THE ELK FRAMEWORK .. 17

3.1. MESSAGE GATEWAYS .. 17
3.2. MESSAGE PROCESSORS .. 18
3.3. SUBSCRIPTION MANAGER ... 18
3.4. JOB QUEUE ... 18
3.5. PROCESS... 18
3.6. FACTORY.. 19
3.7. EVENTS AND EVENTLISTENERS.. 19
3.8. FILTERS.. 20
3.9. CONFIGURATION OF THE DEVICE ... 21
3.10. SUMMARY OF THE ELK FRAMEWORK... 21

4. THE ELK REFERENCE IMPLEMENTATION .. 21
4.1.1. ElkStartupServlet .. 22
4.1.2. URLAccessTool .. 22
4.1.3. SimpleDeviceConfig ... 22
4.1.4. DispatchingJMFServlet and SubscribingIncomingJMFDispatcher 22
4.1.5. AsyncHttpOutgoingJMFDispatcher ... 22
4.1.6. Implemented Message Processors .. 22
4.1.7. AsyncSimpleSubscriptionManager ... 23
4.1.8. MemoryQueue .. 23
4.1.9. ConventionalPrintingProcess... 23

4.2. IMPLEMENTED PROCESSES ... 23
4.2.1. ApprovalProcess... 23
4.2.2. ConventionalPrintingProcess... 23
4.2.3. AbstractProcess .. 24
4.2.4. BaseProcess.. 24

5. PROGRAM DESIGN, CONCEPTS AND DEVELOPMENT.. 25

4 (57)

5.1. LOGGING.. 25
5.2. TESTING ... 26

5.2.1. Testing in Elk .. 27
5.3. EXTENSIBILITY... 27
5.4. REFACTORING .. 28
5.5. DECOUPLING .. 29

5.5.1. Observer pattern... 29
5.5.2. Command Pattern... 31
5.5.3. Strategy pattern .. 32
5.5.4. Design pattern similarities ... 32

5.6. MAINTAINABILITY ... 33
5.7. ASYNCHRONOUS PROCESSING .. 33

5.7.1. Implementation of asynchronous processing.. 35
5.8. PREPROCESSING ... 35

6. DISCUSSION .. 36
6.1. USAGE SCENARIOS ... 37

6.1.1. The Elk as a simulated process in a print production workflow... 37
6.1.2. The Elk as an integration layer between a Manager and a machine.................................... 38

6.2. FUTURE WORK ... 38
6.3. RELATED WORK ... 38

6.3.1. Alces ... 39
6.3.2. Helk... 39

7. CONCLUSION ... 39
8. ACKNOWLEDGEMENTS.. 40
9. APPENDIX A: RUNNING ELK ... 41

9.1. DEPENDENCIES... 41
9.1.1. JAR-files ... 41
9.1.2. WAR-files .. 42

9.2. DEPENDENCY INJECTION .. 42
9.2.1. Spring in Elk ... 42

9.3. APACHE ANT.. 43
9.3.1. Usage of Ant in Elk... 43

10. APPENDIX B: GLOSSARY ... 44
10.1. SOFTWARE RELATED TERMS... 44
10.2. PRINT RELATED TERMS .. 45

11. APPENDIX C: THE AUTHOR’S PROGRAMMING CONTRIBUTIONS........................... 48
11.1. KNOWNDEVICES MESSAGE.. 48
11.2. JDF PREPROCESSING.. 48
11.3. SUBSCRIPTIONS FUNCTIONALITY.. 49
11.4. ASYNCHRONOUS PROCESSING .. 49
11.5. CONVENTIONALPRINTING PROCESS ... 49
11.6. ADDITIONAL FEATURES.. 50
11.7. TIME CONSUMPTION ... 50

12. APPENDIX D: CODE STATISTICS FOR ELK .. 52
12.1. PROJECT TOTALS .. 52
12.2. LINES OF CODE .. 52
12.3. OLA STERING’S CONTRIBUTIONS.. 52

12.3.1. Activity in Directories (Ola Stering) .. 53
13. REFERENCES... 55

5 (57)

6 (57)

List of figures
FIGURE 2.1 OVERVIEW OF WHAT JDF COVERS (INSPIRED BY [42])... 11
FIGURE 2.2 RESOURCE CONSUMPTION AND PRODUCTION IN JDF ... 12
FIGURE 2.3 TREE OF JDF NODES DESCRIBING A BROCHURE (IMAGE FROM [27]) 12
FIGURE 2.4 ELK AND ALCES ROLES .. 14
FIGURE 2.5 INTERACTION BETWEEN MIS AND A PRINT PRODUCTION WORKFLOW 14
FIGURE 2.6 OVERVIEW OF THE STRUCTURE OF THE ICS DOCUMENTS..................................... 16
FIGURE 3.1 OVERVIEW OF THE ELK FRAMEWORK (IMAGE FROM [8])....................................... 17
FIGURE 3.2 ABSTRACT FACTORY PATTERN IN ELK, UML... 19
FIGURE 3.3 OVERVIEW OF THE ELK REFERENCE IMPLEMENTATION EVENT HANDLING.... 20
FIGURE 4.1 CONVENTIONAL PRINTING ELK DEVICE ... 21
FIGURE 4.2 THE PROCESS IMPLEMENTATION HIERARCHY, UML ... 24
FIGURE 5.1 OVERVIEW OF THE SUBSCRIPTIONS PACKAGE, UML... 28
FIGURE 5.2 OVERVIEW OF REFACTORED SUBSCRIPTIONS PACKAGE, UML 29
FIGURE 5.3 STRONGLY COUPLED SENDER AND RECEIVER CLASSES.. 30
FIGURE 5.4 DECOUPLING USING THE OBSERVER/MEDIATOR PATTERN, UML........................ 30
FIGURE 5.5 MESSAGE PROCESSORS AND THE COMMAND PATTERN, UML.............................. 31
FIGURE 5.6 QUEUEFILTER AND THE STRATEGY PATTERN, UML.. 32
FIGURE 5.7 SUBSCRIPTION DEADLOCK SEQUENCE DIAGRAM, UML ... 34
FIGURE 5.8 SEQUENCE DIAGRAM OF A SUBMITQUEUEENTRY COMMAND 35
FIGURE 5.9 JDF PREPROCESSING STEPS... 36
FIGURE 6.1 ELK AS A SIMULATED DEVICE ... 37
FIGURE 6.2 ELK AS AN INTEGRATION LAYER.. 38
FIGURE 7.1 INTERACTION OF ELK CONVENTIONALPRINTING PROCESS 39

7 (57)

1. Introduction

1.1. Problem statement
The trend in the printing industry is towards an increasing amount of individual print jobs
and shorter run lengths. In order to maintain profit print shops need to efficiently manage
the growing amount of administrative information and streamline their print production
workflow. Information interchange between, and integration of, administrative systems
and production equipment is crucial in order to be able to optimize the workflow and
maintain profitability.

The Job Definition Format (JDF) is a joint effort by the vendors in the printing industry
that attempts to solve the problems described above. JDF specifies an XML-based data
interchange format for integrating systems, software and equipment in a print production
workflow. In order to help vendors implement JDF-enabled software CIP4 (see below),
the organization responsible for JDF, would like to provide a reference implementation of
a JDF device. In August 2004 work began on a reference implementation, codenamed
Elk.

The CIP4 required the following tasks to be completed:

• Provide a fully functional JDF Device conforming to the Base ICS [5]
• Analyze and describe the software design of Elk

A more detailed description of problems arisen and how they were solved can be found in
11 Appendix C: The author’s programming contributions

1.2. Goal
The goal of this thesis was to further develop the Elk according to the requirements from
CIP4. Also, a goal is to explain the architecture and the software design approaches used
in Elk; the definition of the requirements of building a JDF enabled software device as
well as explaining the concrete usage of design patterns and programming solutions.
Another goal is to provide a detailed overview of the Elk project, its design and
implementation strategies.

1.3. Method
In order to contribute in a meaningful way in constructing a JDF Device research and
reading in the JDF Specification [27] and other printing industry related literature was
conducted. Involvement in the technical workgroup within CIP4 that focus on tools and
infrastructure also helped the author to get acquainted with JDF and the related work.
Basic understanding of XML [37][41] was also of importance. Since the Elk Project
development started in 2004 the author needed to fully understand the concepts and the
architecture of the framework to be able to further develop it. The chapters “The Elk
Framework“ and the “The Elk Reference Implementation“ explains these concepts. The
Elk Framework development process also included reading and understanding of testing
using JUnit [34], version and bug report system JIRA [32] as well as the logging concepts

8 (57)

of log4J [39]. Design choices in the development work has been made in discussion with,
among others Claes Buckwalter and by the author’s previous knowledge of program
development combined with problem specific literature and the use of online resources.
The UML diagrams in this thesis follow the suggestions in UML Distilled [19].

1.4. Conventions
Terms that are encountered for the first time and later in the thesis are explained further
are given in italics. Examples: JDF, CIP4, Device. A brief explanation of some of the
words in italic may also be found in Appendix B: Glossary.

Terms directly derived from the JDF Specification [27] starts with a Capital letter.
Examples: Device, Agent, Controller, MIS.

Java classes and methods are written with the code font as well as console calls and
filenames. Examples: SubscriptionManager, MemoryQueue,
IncomingJMFDispatcher.

In cases where classes with long names are referred to several times in the same section,
the abbreviation used for the rest of the section is given within parenthesis. Example: The
SimpleAsyncSubscriptionManager (SubManager) is often used here. The
SubManager is also….

1.5. Acronyms
Some of the acronyms that are used in this thesis:
ERI

The Elk Reference Implementation

XML Extensible Markup Language

ESB Enterprise Service Bus

MIS Management Information System

JDF Job Definition Format

ICS Interoperability Conformance Specification

JMF Job Message Format

HTTP Hyper Text Transport Protocol
URL Uniform Resource Locator
Most of these acronyms are explained more thoroughly later in the thesis.

9 (57)

1.6. Disposition
First, the reader is introduced to CIP4 and JDF. Some of the terminology which will be
used throughout the paper is also defined. The next chapter starts out with explaining the
requirements and generic functionality of a JDF enabled software prototype which the
Elk framework is built upon. Next, the Elk Project is introduced to the reader and the
Framework as well as the reference implementation is explained. The following chapter
explains the program design and the development process of the project including
discussions and programming specific solutions to arisen problems. Finally, the resulting
software is discussed and some thoughts on future and related works are given. The
appendices include some help on how to run Elk; a glossary and the author’s
programming contributions to the project.

10 (57)

2. JDF and CIP4
In order to understand the architecture and design of Elk the reader needs to be
acquainted with JDF and its structure. A brief summary of CIP4 and JDF is given in the
following sections. More comprehensive information can be found at cip4’s web site [56]
and in the JDF Specification [27].

2.1. CIP4
The International Cooperation for the Integration of Processes in Prepress, Press and
Postpress Organization [56] is a non-profit organization and was formed in September
2000. CIP4 brings together end-users, vendors and consultants in the Graphic Arts
industry to unite and develop standards, tools and overcome communication barriers
within the industry.

The need to streamline and increase efficiency in a print production workflow becomes
more and more prominent for each day that pass. The manufacturing industry has for a
long time been able to automate its processes, and the Graphic Arts industry has been far
behind. The first great effort to automate the processes in a print production workflow
was made by CIP3, the predecessor to CIP4. CIP3 and its members developed the Print
Production Format (PPF) which had some success in postpress operations. Yet another
early attempt was made by Adobe and its Portable Job Ticket Format (PJTF) which was a
method for exchanging print metadata. Other attempts were Graphic Communications
Association's Industry Architecture Project and IFRA's ifraTrack.

With these formats in mind, an XML-based job ticket format was created by the
companies Adobe, Agfa, Heidelberg and MAN Roland which they called the Job
Definition Format (JDF). They asked CIP3 to take over the stewardship of the
specification and to make JDF an open, public for all, data interchange format. The CIP3
merged into CIP4 which now manages the specification.

Not only does CIP4 manage the specification of JDF, they also find new user
requirements, develop and enhance it. They also maintain and develop a Software
Development Kit (SDK) and provide applications and tools for building JDF software.
CIP4 conducts its work through technical working groups each focusing on some part of
the specification. Some examples are the Prepress, Digital Printing and Tools &
Infrastructure groups.

2.2. JDF
This subsection introduces JDF to the unfamiliar reader. This summary is very general
and the author refers to the JDF 1.2 Specification [27] and the ICS Documents [28] for a
complete overview. The author believes that the concepts explained in this section are the
most important in order to understand the contents of the remaining parts of this thesis.

11 (57)

“Because of workflow system construction in today’s industry, the principal
subsection procedures of a printing job—prepress, press, and postpress—remain
largely disconnected from one another. JDF provides a solution for this lack of
unity. With JDF, a print job becomes an interconnected workflow that runs from
job submission through trapping, RIPing, filmmaking, platemaking, inking,
printing, cutting, binding, and sometimes even through shipping.”

([27], section 2.2 JDF Workflow)

The above sentence clearly overviews the possibilities and aim of JDF. The emphasis lies
on the interaction and information interchange between applications, machines and
humans. XML is a descriptive language which has syntactic rules which enables
computers to interpret and verify contents and at the same time it is easily understood by
humans. Therefore, XML is used to structure and define the products and processes in
JDF. In order to follow a job defined in JDF through the execution process, constructs for
auditing and messaging are provided. The messaging format is called Job Message
Format (JMF, see below). The figure below overviews the uses of JDF:

Figure 2.1 Overview of what JDF covers (inspired by [42])

2.2.1. Structure

A product defined in JDF in its entirety is called a Job. A Job is a tree of Nodes which
describes different stages of a print job. A JDF Node can be of different types:

• Product Intent Node – A description of a print job which does not
necessarily contain any actual processing information. It is rather a definition of
a product from a customer’s point of view, with possibly little knowledge about
the processing steps. For example may a customer describe a brochure with 4
pages in color, but the actual processing steps are left out, such as RIPing,
trapping etc.

• Process Node – This is a definition of a single processing step in a JDF
workflow, for example the process of printing. Process Nodes are always leaves
of a tree. The JDF Specification defines all the processes needed to complete a
print job. Some example of process nodes are Approval, BoxPacking,
ColorCorrection, Rendering which are briefly explained in Appendix B:
Glossary.

12 (57)

To cluster processes that belong together or to enable multiple processing steps at the
same time, there are also nodes of type Process Group and Combined respectively.

Process Nodes and Resources are the basic elements within JDF. Each Process Node is
dependent on some input Resource/Resources that must be available in order for the
Node to execute. When all the input Resources for a Process Node are available,
execution may be performed and the processing is carried out and produces some output
Resources/Resources (see Error! Reference source not found.) which in turn may be an
input resource of another process. Resources are thus either consumed or produced by a
Process. For example the Process of printing requires that ink, papers and plates etc. are
available. The Nodes and Resources are defined as XML-constructs.

Figure 2.2 Resource consumption and production in JDF

2.2.2. Workflow

Print jobs in JDF are defined in such a way that the execution order of different parts of a
job is not important. Most customers have a quite precise idea on how they want their
product. What they may not know is the difference between choosing a regular four color
scheme, black and white scheme or a more advanced color scheme in terms of cost and
quality. The job described by Product Intent Nodes can vary from very general to
extremely detailed, therefore the different knowledge of customers is not a problem.

Figure 2.3 Tree of JDF nodes describing a brochure (image from [27])

Assume that Figure 2.3 is the tree of Nodes describing a brochure. Node 1 describes the
entire brochure. Node 2 specifies the cover and the child nodes of 2 describe the work

13 (57)

that needs to be done to complete the cover such as RIPing, plate making and printing.
The same procedure is made with the contents of the brochure described by Node 3. It is
up to the controlling system to plan and to overview the workflow, as well as deciding
the order of execution. This production planning is usually made from a Management
Information System (MIS, see below) which is the controlling system of a print
production workflow. For example, the Process group which describes the process of
printing the contents may be made before the printing of the cover, as long as the process
of putting the cover and the contents together are made after the printing of both parts.

2.2.3. Roles

To avoid misconceptions and misuse of terminology the JDF Specification defines
certain Workflow Component Roles [27] and their parts in a print production workflow:

• Machine - A machine is any part of the workflow system designed to execute
a process. Most often, this term refers to a piece of physical equipment, such
as a press or a binder, but it can also refer to the software components used to
run a particular machine.

• Device - A Device is capable of executing the information it receives from an
Agent or a Controller. Devices must be able to execute JDF Nodes and initiate
its underlying machine. It may also be able to send messages using JMF back
to the controller/agent. An example of a Device is the software that receives a
Process Node and initiates for example a printing press to print what is
defined in the Process Node.

• Agent - An agent can write, create and modify JDF Nodes. Anything that can
be used to create a JDF Node is an agent, for example a simple text editor.

• Controller - A Controller can split up and route JDF Nodes to appropriate
Devices. A controller must at least be able to initiate one process, controller or
device.

• MIS - The Management Information System is controlling and overseeing the
complete workflow and its units. It is also responsible for monitoring the
progress of the job. The MIS can do this via JMF or by information from the
JDF Nodes audits.

These roles are still quite vague in their definitions and most often a piece of software or
even a machine can have many roles. It is also important to notice a hierarchy of Agents
and Controllers is possible, where one controller can initiate another controller at a lower
level. Throughout this paper there are also some more roles that are used and taken from
the Base ICS Specification (see ICS Documents below) [5] which are defined in terms of
interaction between different workflow components. These roles are:

• Manager Interface - The interface that sends JDF Instances and JMF
messages to a Worker in a Device or a Controller.

• Manager - The software that implements the Manager Interface.
• Worker Interface - The interface that receives JDF Instances and JMF

messages from a Manager in a Controller or a MIS.
• Worker - the software that implements the Worker Interface.

14 (57)

All these roles are used in this thesis and they are important in order to understand the
meaning of a term. An instance of Elk (see The Elk Reference Implementation, p. 21) is a
Worker that implements the Worker Interface (in terms of interaction with a Manager). It
can also be defined as “a Device with Agent properties”. Alces (see Alces, p. 39) is a
Manager and the figure below shows the visual relationship between the roles.

Figure 2.4 Elk and Alces roles

2.2.4. JMF

The Job Messaging Format (JMF) defines a unified communication channel for systems
within a print production workflow. The need for interaction in a dynamic and
standardized way is crucial in order to monitor and control the workflow. JMF provides a
wide range of capabilities to accomplish these interactions. Some of the use cases when
JMF is used are at system startup, for error tracking purposes, job changes, queue
handling and job submission. A Device or Worker may update status changes to the MIS
via JMF. JMF messages are most often sent over HTTP.

Figure 2.5 Interaction between MIS and a print production workflow

15 (57)

The MIS communicates with the different managers (Figure 2.5) or controllers which in
turn communicate with underlying devices and controllers.

JMF Messages are divided into different message families to indicate their purpose. The
different families are

• Queries which are sent to a Device and asks for its current state.
• Commands which are intended to modify the Device’s current state.
• Responses which are answers to Queries and Commands.
• Acknowledges which in case the processing of a Query is time consuming is

sent to confirm that a Query message was received.
• Signals which are sent from a Device or Controller to inform a MIS about a

state change without the MIS explicitly asking for it.

2.2.4.1. Subscription Management

For a MIS to be able to monitor the workflow it needs to keep track of the Devices
currently running and their progress. Therefore, a Subscription element can be included
in a Query message and the receiving Device will then send back status information in a
given time interval or at a given rate to a specified location (commonly a MIS or
Controller URL). The location and the intervals are all submitted in the Subscription.

2.2.5. Queue Management

Many Devices, such as printers or software will be able to receive jobs even though they
are currently processing another job. The Device has an internal queue where jobs are
stored and executed as the jobs are being processed. A MIS may be interested in the
status of the queue or current jobs in the queue. JMF also defines and supports queue
management.

2.3. ICS Documents
The JDF Specification is very large document because it covers all the processes needed
to complete a print job. A product or a piece of software that claims to be JDF enabled
does not likely implement the whole of JDF. Rather, it implements a small subset of JDF
which corresponds to the tasks it can perform. It is up to each vendor to implement any
subset of JDF. There is nothing which guaranties that two products can interact even
though they both claim to be JDF compatible.

The solution to this interaction problem is a set of Interoperability Conformance
Specification (ICS) documents [28]. These documents were introduced together with
version 1.2 of JDF to avoid incompatible JDF “dialects” and to make systems interact in
a meaningful way. At the time of writing there are 6 categories of ICS documents and
they each define a subset of JDF. The different categories focus on different product
groups such as Prepress, ConventionalPrinting, and Binding. There are also the Base ICS
document which defines the minimal requirement for a Worker and the MIS ICS which
defines the communication requirements between a MIS and production equipment.
Figure 2.6 shows an overview of the ICS documents.

16 (57)

Figure 2.6 Overview of the structure of the ICS Documents

To additionally increase the flexibility each ICS document defines different levels of
interoperability.

17 (57)

3. The Elk Framework
This thesis describes the process of developing a JDF enabled software tool; the
programming tasks that needs to be resolved; and the generic functional requirements for
such a tool. The Elk Framework [13] is the resulting software and consists of:

• An Application Programming Interface (API) and
• A reference implementation of the API

As Buckwalter suggests in the article “JDF-enabled Workflow Simulation Tool” [8]
certain services are needed in order to fulfill the requirements of a Device implementing
the Worker Interface (see section 2.2.3 Roles p. 13). The API is built upon the
specification of the services summarized below and the API also includes some other
features which alleviate implementing a Device in good programming manners. Below is
a figure of the high level components of the Elk Framework.

Figure 3.1 Overview of the Elk Framework (image from [8])

3.1. Message Gateways
Communication is an essential part of JDF software. The interaction between a Worker
and the MIS is done through JMF and enables the Worker to update the MIS on state
changes, amount of printed sheets for a printing press, the Device’s queue and running
jobs etc. The Elk Framework provides message gateways in order to receive JDF and
JMF instances without exposing the underlying network protocol. This will enable the

18 (57)

user to focus on the processing of messages instead of how the JDF and JMF messages
are sent and received. The processing is done through the Message Processors. The Elk
Framework also contains an outgoing message gateway which adds the necessary http
headers and so forth to the outgoing JMF messages.

3.2. Message Processors
The Message Gateway routes the JMF messages to a Message Processor. A Message
Processor is designed to handle a JMF message [27] of a specific type, for example a
QueueStatus message. The Elk Framework contains an interface (JMFProcessor) that
defines a generic method for processing a JMF message. This enables any implementing
classes to be defined and handled in a unified way.

3.3. Subscription manager
The subscription manager is the piece of software that handles the subscriptions and
persistent channels. It is responsible for broadcasting events to subscribers. It also stores
and keeps track of subscribers. The subscription manager removes some work from the
implementing process. Handling of subscriptions can be implemented separately which
simplifies the implementation of the process. Furthermore, the subscription handling is
similar independently from which process is implemented. The SubscriptionManager
interface specifies this functionality.

3.4. Job queue
Submitted jobs to the Device are stored in a Job queue, thus the functionality of a queue
is necessary. The Queue management in JDF is quite detailed. The Elk Framework
provides an interface defining the generic functionality of a queue; Queue.

3.5. Process
As mentioned, a process is the machine or device that consumes input resources and
produces some kind of output resource. The Process is performing the actual work. The
Process interface defines a set of generic methods that all processes need to handle.
Some examples of methods that are defined here are starting, initiating, stopping and
running the device. A vendor that wishes to use Elk as a foundation for implementing
JDF enabled software in their company or print shop needs to implement the Process
interface. As the Elk Reference Implementation (ERI, see below) is constantly enhanced
and more functionality is added to it, much of the messaging and other requirements are
already implemented and can be reused. However, the Elk does not contain any machine
or device specific details on how communication shall be carried out with the actual
machine.

The above interfaces are the basic JDF specific services discovered and implemented in
the Elk Framework. The Elk Framework also provides some additional functionality
classes and interfaces which are briefly explained below. Most of these classes alleviates
the programming and implements some basic functions which are useful in implementing
any kind of JDF Software.

19 (57)

3.6. Factory
The Elk Framework provides a JDFElementFactory to easily create JDF Elements. The
Factory is a Singleton [50], meaning that only one instance of the object exists and is
used to create JDF Elements throughout the Elk application. The Elk is using and is
dependent on the CIP4 developed JDFLib-J [30] and it is due to changes and has a
different development cycle than Elk, new releases does not coincide with Elk releases.
Therefore compatibility issues may arise when updating or changing to a new version of
JDFLib-J. One of the advantages using the factory is that if the implementation of
creating JDF Elements change, the only place where any code needs to be changed is in
the implementing method of the Factory. The Elk Framework offers to create
JDFElements in different flavors and to encapsulate the concrete implementations of how
the elements are created, adhering to the Abstract factory pattern [1]. The client (e.g The
Elk Reference Device) only need to worry about the JDFElementFactory method
createJDFElement(String elementName) in order to get the Element, nothing else
(see figure below).

Figure 3.2 Abstract Factory pattern in Elk, UML

Which JDFElementFactory to be instantiated can be made in different ways and in Elk it
is defined in a Java properties file.

3.7. Events and EventListeners
In order to achieve as much decoupling (see 5.5 Decoupling) between objects as possible
the Elk Framework defines certain Event classes for different type of events that may
occur in a Device. All events extend the ElkEvent interface. Events are used in Elk to
internally communicate state changes. These internal events may be translated into
external events in the form of Signals (see JMF, p. 14). Signals are used to inform the
MIS or a Controller about the status of the Device, the Queue or the progress of a job.
Classes for events which are defined in the Elk Framework are:

20 (57)

• ProcessStatusEvent – This type of Events are supposed to be generated
on status changes for the Device, for example from Idle to Running or from
Running to Cleanup.

• ProcessAmountEvent – ProcessAmountEvents are generated during the
execution of a job when the process produces an amount of some sort. Most
commonly the Amount has to do with the amount of printed sheets.

• ProcessQueueEntryEvent – Each QueueEntry in a Queue has a Status
depending on how far in the execution process the QueueEntry and its
attached JDF Node has come. When a QueueEntry is in the Queue waiting to
be executed, the status is “Waiting”, once the execution start it is changed to
“Running”. The resulting status of a QueueEntry is either “Completed” or
“Aborted”. The ProcessQueueEntryEvents are currently used to update the
Queue on changes of status in a QueueEntry.

• QueueStatusEvent – This type of events are used when the Queue change
its state.

Figure 3.3 Overview of the Elk Reference Implementation event handling

Note: The image above is a simplification, the Events are sent using helper classes,
Notifiers which are class variables of the process. The reason for this can be found in
section 5.5.1 Observer pattern on p. 29.

3.8. Filters
The Elk DeviceFilter interface defines a method for filtering a JDFDeviceList
according to a given JDFDeviceFilter. The QueueFilter interface defines a method for
filtering a queue according to a given QueueFilter. The Elk Framework provides these
interfaces to decouple the behavior (filtering, sorting) of a JDFDeviceList or JDFQueue

21 (57)

from the object itself. This design solution is the Strategy pattern (see Strategy pattern, p.
32).

3.9. Configuration of the Device
In JDF, a device and its capabilities are defined as an XML-element with sub-elements
and attributes which reveals what the Device is capable of doing. The Elk Framework
provides specifications for accessing and configuring the Device via the Config and
DeviceConfig interfaces. These definitions are used throughout the application to
retrieve device specific information such as its id, which protocols it has support for
when submitting a JDF and so on.

3.10. Summary of the Elk Framework
To summarize, the Elk Framework API acts as a skeleton upon which a JDF Device can
be built. It provides some generic functionality which alleviates the implementation
obstacles that needs to be solved in order to deploy a functional JDF enabled device. It
mainly consists of interfaces, the interaction glue between different parts of a device. The
Elk Reference Implementation will put some meat on this skeleton and act as an example
application and implement the interfaces specified in the Elk Framework.

4. The Elk Reference Implementation

The architecture and design of the ERI is most easily explained by an image, see Figure
4.1.

Figure 4.1 Conventional Printing Elk Device

22 (57)

The ERI implements the services defined in the Elk Framework. The classes being used
in an instance of Elk are configured through an xml file managed by the Spring
Framework [53]. Since Spring uses dependency injection (see 9.2 Dependency injection,
p. 42) to instantiate its objects, each instance of Elk can easily be configured, and new
classes can be replaced by older ones in a convenient way. Below is a quick explanation
of the classes in the figure above:

4.1.1. ElkStartupServlet

This servlet's sole purpose is to configure the Elk reference implementation. It loads the
Spring [53] configuration that instantiates objects and injects dependencies. It also loads
relevant event listeners to the classes that listen to events.

4.1.2. URLAccessTool

A file utility class used to access the file system. The URLAccessTool implements the
FileUtil interface. The files are addressed using URLs.

4.1.3. SimpleDeviceConfig

The ERI provides a SimpleDeviceConfig class which supports loading the configuration
from an XML-file on the file system or on the network through a URL. Implementing the
DeviceConfig interface (see Configuration of the Device) will enable the user to build
another, more sophisticated way of configuring the Device.

4.1.4. DispatchingJMFServlet and SubscribingIncomingJMFDispatcher

The DispatchingJMFServlet receives, parses and forwards JMF messages to the
SubscribingIncomingJMFDispatcher (JMFDispatcher). The JMFDispatcher then
identifies the type of the message and forwards it to the correct JMF message processor.

4.1.5. AsyncHttpOutgoingJMFDispatcher

AsyncHttpOutgoingJMFDispatcher is the class that asynchronously dispatches JMF
Messages which most often is a Response or a Signal to a receiving MIS or another
Controller/Device.

4.1.6. Implemented Message Processors

The Elk Reference Implementation supports the following messages:
• Queries: Events, KnownDevices, KnownMessages, SubmissionMethods,

QueueStatus
• Commands: StopPersistentChannel, CloseQueue, HoldQueue, OpenQueue,

RemoveQueueEntry, ResumeQueueEntry, SubmitQueueEntry,
RemoveQueueEntry

23 (57)

The corresponding implementing classes follows the naming convention to include the
message name followed by JMFProcessor e.g. KnownDevicesJMFProcessor for the
KnownDevices message. Since the Elk is under constant development, the implemented
messages changes over time.

4.1.7. AsyncSimpleSubscriptionManager

The current version of Elk uses the AsyncSimpleSubscriptionManager to handle the
subscriptions. The AsyncSimpleSubscriptionManager listens to
ProcessStatusEvents, ProcessAmountEvents and QueueStatusEvents in order to be
able to broadcast Signals and Status messages to the subscribers. See Figure 3.3
Overview of the Elk Reference Implementation event handling.

4.1.8. MemoryQueue

The ERI implements a memory based queue. That is, the entries in the queue are lost
each time the Elk Device restarts or the server shut down. The MemoryQueue implements
the Queue interface. Of course a persistent queue would be desirable (see 6.2 Future
work, p. 38).

4.1.9. ConventionalPrintingProcess

See Implemented Processes below.

4.2. Implemented Processes
At the moment the ERI contains of two implemented simulated processes defined in JDF.

4.2.1. ApprovalProcess

The Approval process is usually carried out by a person who will approve or disapprove
for example a sample print. The current implementation simulates this by approving half
of the jobs and disapproving the rest. It is a very simple and first proof that the ERI can
be used for simulating processes. The process accepts JDF Jobs containing the Process
Node of Type “Approval”.

4.2.2. ConventionalPrintingProcess

The implementation simulates a printing press. This process executes JDF Jobs
containing Process Nodes of Type “ConventionalPrinting”. The process simulates
printing of sheets at a certain speed and events that can be subscribed are generated for
each of the printed sheets. The simulation also produces a certain amount of waste. All of
these properties are configurable.

24 (57)

The implemented processes inherit and implement the functionality of the Elk
Framework’s Process interface. Many of the inherited methods and much of the
functionality overlap, therefore two classes that do the work of implementing common
process behavior are included in the ERI. Both of these could preferably be reused when
extending Elk to handle another Process Node Type. Figure 4.2 below shows the class
hierarchy.

Figure 4.2 The Process implementation hierarchy, UML

4.2.3. AbstractProcess

Since certain classes are interested in the status of a process, methods for registering and
deregistering listeners to process events are needed. These methods are common to all
processes and are implemented in the AbstractProcess.

4.2.4. BaseProcess

Functionality common to all processes also includes:
• The process of fetching ready to run jobs from the queue.
• Selecting only the Process Nodes of correct Type and forward it to the

executing implemented process.
• To ensure that the JDF Node is ready to execute and that the Input resources

are available.
• To add and modify audits for executed JDF Nodes.
• Firing of events on status changes in the Device.
• To perform post processing of a job including cancel affected subscription and

sending of the processed JDF/JMF to its correct location.

25 (57)

Some of other basic functionality includes starting and stopping of the device which is
also implemented in the BaseProcess.

5. Program Design, Concepts and Development

The Elk Framework strives to use good programming practices and demands to be robust
and reliable is very important for a framework. In order to accomplish this, the project
evolves through an iterative development process [22] where redesign and changes are
parts of development. Firstly, in this paragraph a brief explanation of the concepts are
explained, the following sections go into detail into each concept and design choice. To
have as much control of the execution sequence of Elk as well as for debugging purposes,
Logging is a major feature. Testing is important for any programming task and for a
framework such as Elk where implementations change and evolves it is even more
important. The ease to extend, to develop Elk further is of course also essential, one
example of this is given in the section Extensibility. Internal changes and reuse of code
without changing the external behavior, changing the API is called Refactoring and is one
of the programming concepts that are used. Different methods to accomplish Decoupling,
to have as little dependency between objects have also been a goal. All these practices
together with well documented code have resulted in maintainable code, see section
Maintainability.

All of the above practices hold for more or less any programming project, the use of
Asynchronous processing and Preprocessing of received JDF files are of a more JDF/Elk
specific nature. They are further explained in the just mentioned sections.

5.1. Logging
 “Logging provides a way to capture information about the operation of an application.
Once captured, the information can be used for many purposes, but is particularly useful
for debugging, troubleshooting, and auditing.” [40].

The main disadvantage of using logging as a debugging tool is the fact that it adds extra
code into the application which leads to code overhead and loss of performance.
However, the code overhead is of little disturbance and can actually be a source of
information for new developers trying to understand the code plus the ability to follow
the control flow of the application in the outputted logs. The Elk uses log4j [39] as its
Logging framework which has been implemented with an emphasis on speed [40].

The Elk Framework is used and developed by several authors; therefore the information
in each log message is maximized. The logging strives to inform the reader, the user or
the developer of the current state of the application and its fields. This is also applicable
for the messages of exceptions in Elk, which most often is also sent to the log. The
principle “To capture the failure, the string representation of an exception should contain
the values of all parameters and fields that ‘contributed to the exception’” [7] is used in
Elk and also applied for other type of messages.

Two other features that advocates logging before regular debugging tools are:

26 (57)

• When debugging an application, the values registered and the state of the
application is transient while the debug log messages are stable and available for
later analysis and evaluation [36].

• Most debugging tools have difficulties handling applications that run in
different threads which is the case for Elk. Therefore, the logging from different
threads can either be sent to different output files or the messages are simply
logged in the order they occur.

Important logging features that Log4j [39] provides is dynamic configuration, logging
levels, directed output, and enabling/disabling logging. Log4j is an open source
framework which is easy to use and to configure. The configuration can be made in
different ways and Elk configures the properties of log4j through an XML-file in the web
application directory (WEB-INF/classes). It is possible to control the amount of log
messages by setting the debug level. The debug levels have priorities where FATAL has
highest priority followed by ERROR, WARN, DEBUG, and INFO. Another concept of
log4j is the Appenders. Appenders are used to direct the log messages to different sources
such as console, files, GUI components, remote socket servers and more. The Elk uses a
so called RollingFile appender where log messages are sent to a file which is replaced by
a new one when it has reached a specified size. When debugging is disabled the loss of
speed is extremely little and not of importance to overall performance.

5.2. Testing
Testing is “the process used to help identify the correctness, completeness, security and
quality of developed computer software”[52]. Testing software can me made in different
ways and with different aims:

• White box testing – The source code of the application or the units under
tests are available to the tester and can be accessed freely. This method of
testing is often useful when testing smaller units of code (such as classes in
java). These unit tests often compare an expected result with the actual result,
errors can be found at an early stage in development. The developers do these
tests themselves and may not cover all scenarios because of home blindness.

• Black box testing – The application is tested without knowledge of the source
code. The functionality of a system is tested and is similar to user behavior. One
form of black box testing is the beta releases of software where users can try out
new features and report bugs to the vendor.

With big projects and framework software development continuous testing is essential
since refactoring (see Refactoring, p. 28) and additions are common. A change or an
addition to code can break something which is not directly connected to the piece of code
that is modified. The process of running the same tests over and over again is called
regression testing [52].

There are a few obstacles to overcome in order to make testing useful and used. Firstly, it
needs to be easy to run, preferably with a single command. Secondly, the tests need to be
extensive so that code can be changed; tests rerun and for sure catch any breaking of
code. The principles of writing tests before the actual code is written and also to run

27 (57)

regression tests are adhered in Extreme Programming [18][17] and also a goal for the Elk
development team.

One of the more widely accepted testing procedures is to use the JUnit [34] framework
which enables the user to “cheaply and incrementally build a test suite that will help you
measure your progress, spot unintended side effects, and focus on your development
efforts.” [35]. Junit is a very light weight framework which has two primary classes, the
TestCase class and the TestSuite class. A typical scenario is to write a TestCase for
each of the project’s classes, put them together in a TestSuite and then run the test suite
at a regular basis. When classes are added to the project, new TestCases are added to the
TestSuite and are thus included in the regression tests. Refactoring can be done “much
more aggressively once you have the tests” [35] because in case something breaks it will
show up in the tests.

5.2.1. Testing in Elk

The Elk regularly runs two types of tests: Unit tests using JUnit (White box testing) and
Black box testing using the external tool Alces [2].

• The JUnit tests are run using the test task in Ant (see Apache Ant, p. 43)
which runs all the tests for Elk. When new source code is committed to CVS
(see Maintainability, p. 33) the tests are automatically run using the tool
CruiseControl [10]. With this feature regression tests are carried out
automatically. CruiseControl enables developers to be notified via email about
compilation and test results.

• Alces (see Related work, p. 38) automatically sends a set of JMF-messages to
Elk and summarizes the test results in a XML test report. Initiation of testing
Elk’s functionality towards a Manager (see Roles, p. 13) does still have to be
carried out manually even though the actual tests are automatic once they are
initiated.

5.3. Extensibility
The Elk Framework consists of interfaces and abstract classes which attempts to define
what methods are needed, not how they should be implemented or in how much detail. It
is up to the implementing classes how the methods perform their tasks as long as it
coincides with the interface. In case a particular user is interested in a very specialized
method of filtering a queue the Elk Framework API has an interface QueueFilter. The
interface defines one single method filterQueue which have two arguments: the Queue
to be filtered and the JDFQueueFilter to apply to the Queue. The Elk Reference
Implementation provides a few classes for filtering Queues:

• SortingQueueFilter which sorts the Queue according to the JDF
Specification’s sorting of QueueEntries in a Queue. This filter ignores the
JDFQueueFilter argument.

• AttributeQueueFilter which sort the Queue and filters it according to some
predefined attributes. The QueueFilter argument is ignored.

28 (57)

• BaseICSQueueFilter which filters the Queue according to the given
QueueFilter. The class handles only elements and attributes of the
JDFQueueFilter that are required to conform to the BaseICS [5] conformance
specification.

A possible extension to these classes would be to have an implementation of a
QueueFilter which handles all attributes of the given JDFQueueFilter. A new
implementation could easily be implemented and used in an Elk Device without having
to worry about compatibility, as long as the new class implements the QueueFilter
interface. Also see section “Strategy pattern” and “Figure 5.6 QueueFilter and the
Strategy pattern, UML” on page 32.

The above example shows how an extension can be made to enhance Elks functionality.
The same extensibility options apply to all basic constructs needed to implement a fully
functional JDF Device.

5.4. Refactoring
The term refactoring [48] implies that a programming project that is constantly growing
is also amendable for redesign and enhancements under its life cycle. The ability to break
out common parts, to program to interfaces and to avoid duplication of code is a widely
accepted programming practice. As new features are built in to the project, other already
implemented features may be reused and extracted. One particular case for the ERI is the
Subscription management. At an early stage the Subscribing management was all
implemented in a single class but as features were added the class grew out of hand. The
solution was to refactor the class into several new ones, each responsible for a specific
task of the subscribing mechanism. The refactoring resulted in a new subscription
package which included one class for registering subscriptions, one class for
deregistering subscriptions, one for storing subscription etc. The class diagram (Figure
below) shows an overview of the subscription package as it designed in the current
implementation (some classes left out).

Figure 5.1 Overview of the subscriptions package, UML

29 (57)

The next step in the development of the Subscription package is to enable persistent
storage of the subscriptions on disk (see 6.2 Future work, p. 38). The current
implementation loose any subscriptions on application shut down. A suggestion for the
next refactoring step would be to extract an interface from the SubscriptionContainer
and implement a new PersistentSubscriptionContainer class. The former
SubscriptionContainer can be renamed and reused in case memory-based
subscriptions are desired in the application (Figure below).

Figure 5.2 Overview of refactored subscriptions package, UML

5.5. Decoupling
The JDF Specification [27] defines a very large amount of Processes and Resources.
JDFLib-J [30] provides methods for accessing thousands of attributes and elements in a
JDF file, many of them auto-generated. The Elk Framework implements only a subset of
these methods and has the focus on the Base ICS [5] specification. Despite that, the Elk
enables great extensibility options (see Extensibility, p. 27), partly because of the aim to
restrict dependencies between objects as much as possible. The practice to make objects
independent from each other is called decoupling. One advantage which decoupling
conveys is that an implemented class (an object) can easily be replaced by another. The
idea of programming to interfaces is the foundation to achieve decoupled software. The
Elk is using different strategies, design patterns to solve different particular problems.
The design patterns that are used look very similar in structure but solve different
programming problems. The relationship between the patterns explained below is
discussed at the end of this section.

5.5.1. Observer pattern

One way to accomplish decoupling is by using event messaging and the Observer pattern.
The Observer pattern is “used in computer programming to observe the state of an object
in a program” [45].

The aim is to decouple the Sender/Invoker from the Receiver/Listener so that they can act
independently from each other. Example:

30 (57)

Figure 5.3 Strongly coupled Sender and Receiver classes

Above the AsyncSimpleSubscrptionManager is dependent on the Process interface.
The example assumes that the AsyncSimpleSubscriptionManager is interested in the
Process status changes in order to distribute it to its subscribers. The strong coupling
between these objects is not good. Replacement of one class would require changes in
both them. One solution to the problem is to use the Observer pattern and extract an
Observer/Listener interface. The Elk also uses an extra class, a mediator,
ProcessStatusListenerNotifier to notify the registered Listeners. The Mediator
pattern [38] makes an extension of the Observer pattern and instead of having the
subject/sender itself being responsible of the notification to the observers it is the
mediator. The resulting class diagram would look like in the figure below.

Figure 5.4 Decoupling using the Observer/Mediator pattern, UML

The ConventionalPrintingProcess which implements the Process interface acts as
the subject/sender or the class that generates/fires an event (see also Figure 3.3 Overview
of the Elk Reference Implementation event handling). The
AsyncSimpleSubscriptionManager (SubManager) is a listener which can perform
actions independently of the Process. During the running of the application when
receiving an event; it does not need to know about the functionality or the
implementation of the Process, neither does the Process need to know anything about
the implementation of the SubManager. Upon application startup the application needs to
register the SubManager to the ProcessStatusListenerNotifier. In case another class
needs to listen to ProcessStatusEvents, the only thing that needs to be done is to

31 (57)

register another listener which implements a different behavior upon the occurrence of an
event (e.g. which is the case for the Queue).

Summary: The Elk uses the observer/mediator pattern to accomplish decoupling and it is
used to listen for state changes in the device.

5.5.2. Command Pattern

Command pattern is a design pattern in which objects are used to represent actions. A
command object encapsulates an action and its parameters [9]. In Elk this is used for the
JMFProcessors. The incoming SubscribingIncomingJMFDispatcher (JMFDispather)
only knows about the JMFProcessor interface and the action to processJMF. The
implementation of each JMFProcessor and the actions to be taken depending on the JMF
message received is chosen at runtime. A JMF message is received and dispatched to the
appropriate processor without knowledge of the actions being carried out. See Figure 5.5,
below.

Figure 5.5 Message processors and the Command pattern, UML

In the figure it can also be noted that Elk uses the AbstractJMFProcessor which
implements the common message behavior and the concrete command objects
(KnownDevicesJMFProcessor, KnownMessagesJMFProcess and so on) implements the
message specific actions.

Summary: The Elk uses the Command pattern to accomplish independency between the
JMFDispatcher and the actions to be taken in JMF message processing.

32 (57)

5.5.3. Strategy pattern

The “Strategy pattern is a particular software design pattern, whereby algorithms can be
selected on-the-fly at runtime.” [55]. One example of the use of the Strategy pattern is in
the MemoryQueue class.

Figure 5.6 QueueFilter and the Strategy pattern, UML

One of the behaviors of the MemoryQueue is that it needs to sort its JDFQueue in different
ways. When returning the JDFQueue (from client call) it needs to be sorted, sometimes it
needs to be returned according to a filter (in a JMF message for example). Instead of
implementing these similar behaviors in the MemoryQueue class the strategy pattern is
used to decouple the behavior (sorting, filtering) from the object itself (the MemoryQueue
in this case).

Depending on the context, under what circumstances the JDFQueue is asked for, different
algorithms are used to return it. It is simple to add another implementation of the
QueueFilter and filter the JDFQueue at the implementers own choice. The QueueFilter
interface is part of the Elk Framework while and the concrete classes is part of the ERI.
The same principle is used for sorting a JDFDeviceList using the Elk DeviceFilter
interface.

Summary: The Elk uses the Strategy pattern to decouple the behavior or the algorithms
(such as sorting, filtering) of an object from the object itself. This makes it easy to extend
(see Extensibility, p. 27) and to change behaviors at runtime.

5.5.4. Design pattern similarities

The terminology used in the above design patterns varies from source to source and all
the patterns use a similar structure to accomplish decoupling. The most obvious
differences lie in the usage of the pattern. The structure looks the same for all the above
patterns. Some clarifications regarding the differences are motivated.

The difference between the Observer pattern and the Mediator pattern is that the later has
a mediator class that handles the subject’s observers (see Figure 5.4, p. 30). This puts less

33 (57)

work on the subject and also makes it easy to extend and handle the registered observers
in different ways e.g. by priority. It is also worth noting that the Observer pattern can also
be referred to as the EventListener pattern [16]. In general, events should be quickly
executed (little computational burden) and are often used when dealing with multiple
threads.

In [25] the author claims that “A Command pattern is an object behavioral pattern that
allows us to achieve complete decoupling between the sender and the receiver”. Here, the
author talks about a sender and a receiver which may be confusing since the terminology
is the same for the EventListener pattern. However, the Command pattern is not used to
recognize the state of an application but to execute a command, an action. In Elk’s case
the action is to process a JMF message.
The Strategy pattern on the other hand is used to decouple algorithms from the subject in
a specific context. Different algorithms are used depending on the context. The method
call to the algorithm always looks the same because the algorithms are extending the
specified Strategy interface. The structure of the Strategy and the Command pattern are
the same. The Strategy pattern is used to “define a family of algorithms, encapsulate each
one, and make them interchangeable.” [54]. It is used when the using context has some
expectation about what the method will do [38]. Of course, the method calls to e.g. sort
something could also be seen as an action, and the terminologies overlap again with the
Command pattern. In Elk both sorting and filtering are defined by the same Strategy. It
could be argued that these behaviors should be in the same “family”.

5.6. Maintainability
The maintainability of Elk is achieved through a couple of generally accepted practices.
The Javadoc [26] tool is using a standard way to document code including naming
conventions and other important definitions when it comes to documentation. The Elk
use these conventions and standards which make the code easy to understand and to
maintain. Further tools that are used to make Elk easily maintained are CVS [11] and the
issue tracking system JIRA [32]. JIRA is a web based tool to keep track of bugs and
improvements of a project. These tools together with design principles explained in this
thesis make the Elk project easily maintained.

5.7. Asynchronous processing
To start with the queue and the process need to run in different threads because their
processing needs to act independently from each other. There are also a few reasons for
Elk do handle asynchronous processing. Firstly, the SubscriptionManager needs to
dispatch its internal messages asynchronously because it needs information from the
SubscribingIncomingJMFDispatcher to be able broadcast Signals to its subscribers.
The initial implementation of the SubscriptionManager where synchronous processing
was used sometimes resulted in a deadlock.

34 (57)

Figure 5.7 Subscription deadlock sequence diagram, UML

The MemoryQueue changes its status for some reason. This results in a QueueStatusEvent
which can be seen in the Figure above. The AsyncSimpleSubscriptionManager
(SubManager) is a listener to QueueStatusEvents. The SubManager broadcasts the event
to its subscribers and in case there are any subscribers for QueueStatusEvents the call
will result in a deadlock since the MemoryQueue is waiting for a return from the
SubManager. The current implementation instead let the SubManager broadcast the event
asynchronously (unlike the Figure above, instead the broadCastEvent (event) call is
done asynchronously) and can return and unlock the MemoryQueue. The second branch of
the alt box (in figure above), below the dotted horizontal line (conditional statement)
applies to all other messages and results in a successful return to the MemoryQueue
without a deadlock. The fact that events should be processed quickly is also a reason to
free the MemoryQueue quickly using asynchronous calls.

The next usage of asynchronous processing is the OutgoingJMFDispatcher where the
JMF messages to external users are sent. It is not desirable to have to wait for a response
from an external user since the delay may be time consuming.

The JDF 1.2 Specification [27] also defines mechanism for JMF Messages to be sent
asynchronously. If a JMF message includes the attribute AcknowledgeURL attribute the
Worker (e.g. Elk) needs to respond quickly and confirm that the message was received.
The actual processing is then carried out and when it is finished an Acknowledge
message is sent to the URL given in the AcknowledgeURL of the originally received

35 (57)

message. Some commands may be time consuming and one example of that is when a
SubmitQueueEntry command is received, this is further explained in 5.8 Preprocessing
on p. 35.

5.7.1. Implementation of asynchronous processing

There are several ways to implement asynchronous processing in a Web application. For
Elk the JMS [23] was looked upon as well as the open source framework Mule [44].
Mule is designed around the Enterprise Service Bus (ESB) [15] architecture. One of its
advantages is that it “abstracts the transport technology away from the business objects
used to receive messages from the bus”. The configuration of the messaging objects are
made through an xml file and is easily instantiated and used without almost any code in
the business objects. Furthermore, it is conformed to work with the Spring framework.
An early version of Elk used Mule to handle the asynchronous processing. However,
even though Mule is a lightweight framework it turned out to add more complexity and
weight than necessary. The ESB architecture is designed to handle a great amount of
multiple users which is not the case for Elk.

The current implementation instead uses the util.concurrent v. 1.3.4 [46] package. The
"package provides standardized, efficient versions of utility classes commonly
encountered in concurrent Java programming.”. It turned out to be simple, reliable and it
does fulfill the needs of the Elk asynchronous processing mechanisms.

5.8. Preprocessing
This section will explain how the Elk Reference Implementation does preprocessing on
submitted JDF Nodes and the reasons for it. Below is a sequence diagram that shows the
sequence of events when a JDF Node is received through a SubmitQueueEntry command
JMF message.

Figure 5.8 Sequence diagram of a SubmitQueueEntry command

36 (57)

An arbitrary Invoker sends an http request and it arrives to the DispatchingJMFServlet
which strips the contents of the request contents and forwards it to the
SubscribingIncomingJMFDispatcher (IncomingDispatcher) (see figure above). The
IncomingDispatcher will recognize the message type (a SubmitQueueEntry command)
and forward it to the SumbitQueueEntryAsyncJMFProcessor (SQEJMFProcessor). The
SQEJMFProcessor will perform one out two possible actions depending on the contents
of the message. If the AcknowledgeURL attribute is set to a valid URL, an instant
response is sent back and the preprocessing is done asynchronously (the case for the
figure). If the AcknowledgeURL is not set, preprocessing is carried out synchronously and
the SQEJMFProcessor can not receive new calls until the preprocessing is finished. This
Invoker may have to wait a long time for the Response and there might be time outs. The
preprocessor carries out a set of actions (See Figure 5.9 below) on the JDF Node and
place it in the queue if the preprocessing was successful. Either way a Response
(alternatively an Acknowledge) message is sent back to the Invoker (or another given
URL) with appropriate Response information. The primary advantage of doing
preprocessing on the JDF Node is to ensure that only correctly specified and JDF Nodes
that the Device can handle and execute end up in the queue.

Figure 5.9 JDF Preprocessing steps

6. Discussion
The printing industry is forced to efficiently handle printed media. A graphical arts
industry product is subject to change everyday and individually printed products are not
unusual. One of the goals of CIP4’s work is to provide the industry with tools and
software applications that solves the integration of processes in a print production
workflow. The JDF Specification consists of a definition of these processes in a XML-
based format as well as a definition of the communication format called JMF.

The need to simplify for vendors is of great importance to make the JDF standard have
the impact on the printing industry that is necessary. Single devices should be easy to
replace and update without having to modify the existing software solution or the MIS. A
well defined standard and a nicely designed software interface make these changes easy.
To further be able to simulate and test what impact a particular change in the workflow
brings more advantages to the vendors.

The Elk project is one of the tools that are provided from CIP4. Some of the purposes of
Elk are:

37 (57)

• Give an idea on how a JDF enabled software can be designed.
• Give a concrete example of how Elk can be used to simulate a process in a

JDF enabled workflow.
• Provide a framework which can be used and extended by independent

vendors.
• Provide basic functionality for JMF messaging.
• Provide basic functionality for Subscription management.

The resulting software is easy to maintain and further develop because of the practices
and design approaches that were chosen. At a first glance at Elk may be difficult to grasp
and to get a clear overview of the class hierarchies and how they are related. The use of
the Spring container to instantiate objects may be confusing. However, the advantage of
using Dependency Injection over some other pattern (e.g. Service Locator pattern)
outweighs the disadvantages. It adds more control over the dependencies between objects
and no overhead objects are instantiated. Another thing that may be confusing is the
asynchronous processing behavior. It can be hard to debug and follow the processing in
an asynchronous environment. The fact that "Asynchrony gives better responsiveness and
reduces the temporal coupling but is harder to debug" [19] is of course not optimal. The
complexity and the difficulties to debug are eased by using logging in a proper way.

6.1. Usage scenarios
The Elk can be used in several different ways. This section describes a few usage
scenarios.

6.1.1. The Elk as a simulated process in a print production workflow

Use the Elk worker as a simulated Device in a workflow and analyze what impact it has
on the workflow in whole. This is also useful to test the Manager; does the manager send
correct JMF messages? Does it conform to the Manager part of the Base ICS? The ERI
has a two implemented processes which are the ConventionalPrintingProcess and the
ApprovalProcess. It is easy to extend Elk to handle more processes by extending the
BaseProcess (see Figure 4.2, p. 24).

Figure 6.1 Elk as a simulated device

38 (57)

6.1.2. The Elk as an integration layer between a Manager and a machine

The Elk can be used as the interface towards a Manager (e.g. Alces or an MIS) where the
machine interface towards Elk needs to be implemented. The implemented JMF
functionality and can be used, but also extended.

Figure 6.2 Elk as an integration layer

It is also possible to further develop and extend Elk to handle other ICS’s as well as more
JMF functionality or for vendor specific purposes.

6.2. Future work
The Elk is under constant development. Work on an improved version of the
ConventionalPrinting has been conducted by Marco Kornrumpf. There is yet another
version of the ConventionalPrinting process that is being developed. Work has also been
started on a Generic process which can handle JDF Nodes of several different Process
Node Types.

Some of the more hands on future development areas would be to:

• Implement a persistent queue
• Implement persistent subscriptions
• Develop elk to be MIS ICS [43] conformant and to conform to other ISC’s as

well.
• Implement more simulated processes
• Enhance the event handling for Error events in the Elk Device
• Further develop Helk, the user interface of Elk
• …

6.3. Related work
A closely related project that implements the role of a Manager is the work on Alces, a
project which was also founded by Claes Buckwalter. An add-on to Elk which also
evolves with the project is Helk. Other software, such as JDFLib-J [30] and the

39 (57)

JDFEditor [29] are also tools that are closely related to the development work of Elk.
Michael Bergman has analyzed different design approaches implementing JDF into an
MIS in [6].

6.3.1. Alces

Alces [2] plays the role of a Manager (see Roles, p. 13) and is used for testing the JDF
compliance of a Worker, such as a RIP, a printing press, or a binding machine. Elk is
using Alces to do black box testing for Elk and comes with a pre set test suite of JMF-
messages. The responses from any Worker are analyzed and validated (optional) for
correctness and the results are stored in XML test report.

6.3.2. Helk

Helk is part of the Elk Project and its aim is to make Elk configurable and usable through
a web interface. View and modify the queue, the jobs and the subscriptions, start and stop
the process are some of the use cases of Helk. Much work has to be done (see 6.2 Future
work, p. 38) for Helk to be completed.

7. Conclusion
This thesis aims to explain the functionality and design of the Elk project. Elk is a fully
functional JDF Device conforming to the Base ICS. The framework strives to define the
functionality needed to fulfill the job of a Worker in a print production workflow using
JDF. It is developed in Java and is an open source project. This means that functionality
is constantly added and the software evolves continuously. A running Elk device can be
used to simulate any process of a workflow. Any application capable of sending JMF
messages can use Elk as a component of their workflow.

Figure 7.1 Interaction of Elk ConventionalPrinting process

This thesis also presented the architecture of the Elk project and aims to help anyone
wishing to extend or use Elk in their print production workflow.

40 (57)

The Elk is used by different print related companies over the world as described in Usage
scenarios. Hewlett Packard has implemented Elk in their own software and developed it
to fit their purpose.

8. Acknowledgements
I wish to give my warm gratitude and thanks to Claes Buckwalter for excellent
supervising. Also, Rainer Prosi and Dietriech Mucha have been of great help in the work
with and problems arisen working with the JDF library. The members of the CIP4 Tools
and Infrastructure group who inspired and listened during development of Elk should also
be thanked. The experience to work in such a group meant a lot to me. Additionally, I
would like to thank my colleges at ITN, LiU Norrköping, Sweden and at Heidelberger
Druckmashinen AG, Kiel, Germany. I would also like to thank my room mates in Kiel
who were there when I was not working and also my friends and family back home.

41 (57)

9. Appendix A: Running Elk
The ERI is built using an Ant build script (see Apache Ant) which contains tasks to
compile, test and package the application into a WAR-file (see WAR-files). The web
server that Elk has been tested on is the open source Apache Tomcat [4] server. In order
to run the application the WAR-file needs to be deployed on an active server. Once the
reference device is up and running it can act as an actual device in a print production
workflow, and the application can receive and process jobs as MIME-packages or
referenced in a JMF Message. More information on Elk; the source code and news can be
found at the project web site [13]. The following sections explain the Dependencies and
the instantiation of objects in Elk.

9.1. Dependencies
Of course a framework should be dependent on as little external resources as possible.
However, already implemented functionality and broadly accepted frameworks and
implementations can be used to reduce the burden of reinventing the wheel for each
programming task. The Elk Framework depends on a few external resources which are
needed in order to compile the source code and create a distribution. Some of the
dependencies are:

- The Spring Framework [53], for handling the dependency injection and
initialization of the reference application.

- JDFLib-J [30], all the methods and classes that are JDF specific.
- Xerces [58], the XML-parser that is used to parse the JDF and JMF instances.
- JDom [31] to store and manipulate the parsed XML-files.

External resources are also used to handle logging, http and networking, concurrent
programming and servlets. These are all used when building Elk and are included in the
project with JAR-files (JAR-files, see below). In order to make the Elk easily deployed
into a web application it can be archived into WAR-file (see below). To easily compile
and bundle the project into JARs and WARs the project’s Ant script (see Apache Ant, p.
43) is used. The WAR-file keep the internal file structure intact and make Elk easy to
move, export and deploy.

9.1.1. JAR-files

The Java Archive (JAR) [47] file format enables the user to bundle multiple files into a
single archive file. Most commonly a JAR file includes the necessary class files and other
resources needed to compile and use an application. Additionally, the archive contains a
meta-data file, a so called manifest file with versioning and creator information. Some of
the benefits of having a project’s dependencies in JAR-files include:

- Security, the JAR-files can be digitally signed.
- Decreased download time. Since the files are bundled and compressed only a

single download is needed.
- Versioning. A JAR file can contain version and vendor specific information.
- Portability. The mechanism for handling JAR files is a standard part of the Java

platform’s core API, thus portable.

42 (57)

9.1.2. WAR-files

The Web Application Archives (WAR) [57] is used to store class files and information
about web applications. It may contain Web components, static html pages, JSP-pages,
server side and client side utility classes. A WAR has a specific directory structure. The
top-level directory of a WAR is the document root of the application. The document root
is where JSP pages, client-side classes and archives, and static Web resources are stored.
The WAR-file always contains a subdirectory called WEB-INF containing deployment
specific information.

9.2. Dependency injection
The Elk instantiates its objects using dependency injection using the Spring framework
[53]. Using the Dependeny Injection pattern [20] decouples concrete implementations
from the classes that use it. Spring is the container which is responsible of instantiating
and injecting the necessary dependencies to the objects. In Elk many of the classes are
Singletons and it is an advantage to take care of the instantiations at a single location: the
Spring container. The Spring container is configured in a XML file and the implementing
classes can easily be exchanged.

9.2.1. Spring in Elk

The dependencies (between object) in Elk are mainly injected through the constructor (so
called constructor-injection). E.g. the ConventialPrintingProcess class is dependent
on a Config object (to be able to get the device’s configuration and capabilities), a Queue
(to get jobs from the queue), URLAccessTool (to access the file system in a convenient
way), a Repository (to access locally stored JDF’s). Instead of having the
ConventionalPrintingProcess creating these objects they are passed as arguments to
the constructor. The Spring container take care of the instantiation. Particularly, this is
done during startup of the device and it is configured in the elk-spring-config.xml
file. This file is located in the WEB-INF/classes directory of the ConventinalPrinting
device. All classes are defined here using the Enterprise Java Beans (EJB) [14] principle,
the example above looks like this:

<bean id="process"
class="org.cip4.elk.impl.device.process.ConventionalPrintingProcess"
singleton="true" init-method="init">
 <constructor-arg>
 <ref bean="deviceConfig"/>
 </constructor-arg>
 <constructor-arg>
 <ref bean="queue"/>
 </constructor-arg>
 <constructor-arg>
 <ref bean="fileUtil"/>
 </constructor-arg>
 <constructor-arg>
 <ref bean="outgoingDispatcher"/>

43 (57)

 </constructor-arg>
 <constructor-arg>
 <ref bean="fileRepository"/>
 </constructor-arg>
 <property name="incomingDispatcher">
 <ref bean="incomingDispatcher"/>
 </property>
</bean>

The class attribute of the bean tells Spring which class to instantiate.

9.3. Apache Ant
Apache Ant [3] is java-based build tool. The configuration is made in a simple XML-
based format and it can easily be extended and application specific tasks can be created.
The ant build script (usually in file called build.xml) contains tasks that perform certain
commands on the project being built. Clean, compile are probably the most common
tasks used in ant. The Elk uses plugged in tasks to start, restart and deploy the application
into the Jakarta Tomcat server.

In Elk, the ant script is used for the following tasks:

- Compiling the source code.

- Generating JAR-file.

- Cleaning the output directories.

- Autorun the unit tests.

- Controlling the Jakarta Tomcat [4] server.

- Generate WAR-files for the implemented processes.

- Compile a program that can send JMF messages (used for testing)

9.3.1. Usage of Ant in Elk

There are several ways to perform the tasks above. From an IDE, such as Eclipse [12],
the Ant tasks can automatically be displayed from the IDE environment. The build.xml
file is placed in the project root folder. From a command line console all that is necessary
to do is to write ant to execute the default task (compile, bundle into jar-files and war-
files). To see what other tasks there are type ant –p.

44 (57)

10. Appendix B: Glossary

10.1. Software related terms
Alces Alces plays the role of a Manager and is

used for testing the JDF compliance of a
Worker, such as a RIP, a printing press, or
a binding machine. (see 6.3.1 Alces, p. 39)

Command Pattern A Command pattern is an object behavioral
pattern that allows us to achieve complete
decoupling between the sender and the
receiver (see Command Pattern, p. 31)

Decoupling The practice to make objects independent
from each other. (see Decoupling, p. 29)

Elk project The work of developing the Elk
Framework and the Elk Reference
Implementation. The project’s web site can
be found at [13].

Enterprise Service Bus (ESB)

Enterprise service bus is a generic name for
any solution that provides communication
and translation between applications or
between different processes within an
application [15].

Framework A framework is a reusable design
consisting of abstract classes and
interfaces.

Helk Helk is part of the Elk Project and its aim is
to make Elk configurable and usable
through a web interface. (see 6.3.2 Helk, p.
39)

Regression testing The practice to run the same tests regularly
to ensure the correctness of the software
remains.

45 (57)

Refactoring Refactoring is a disciplined technique for
restructuring an existing body of code,
altering its internal structure without
changing its external behavior (see
Refactoring, p. 28).

Servlet Servlets are the Java platform technology
of choice for extending and enhancing Web
servers [24].

Spring Framework The Spring framework is a wide ranging
framework for enterprise Java
development. (see 9.2 Dependency
injection, p. 42)

The Elk Framework An application framework that provides the
services needed by a JDF Device or
Controller. The Elk Framework API (see 3
The Elk Framework, p. 17) is developed
under the Elk project.

The Elk Reference Implementation (ERI) The Elk Reference Implementation (see 4
The Elk Reference Implementation) is an
implementation of the classes specified by
the Elk Framework. The ERI can also be
referred to as the Elk Device and has the
role of a Worker.

XML (eXtensible Markup Language)

XML is a markup language which defines a
way to describe data according to a
standardized set of rules.

10.2. Print Related terms
Agent An agent can write, create and modify JDF

Nodes. Anything that can be used to create
a JDF Node is an agent, for example a
simple text editor. (see 2.2.3 Roles, p. 13)

Approval The process of approving a media in order
to let it further in the workflow. This
process is commonly done by person; a
customer or an employee.(see 4.2.1
ApprovalProcess, p. 23)

46 (57)

Binding The processes involved in combining
multiple products, bind them together.
Examples from the JDF Specification are
AdhesiveBinding, ChannelBinding, and
CoilBinding.

BoxPacking The process of packing a stack, bundle or
pile of a product into a box or a cartoon
[27].

ColorCorrection ColorCorrection is the process of
modifying the specification of colors in
documents to achieve some desired
visual result [27].

Controller A Controller can split up and route JDF
Nodes to appropriate Devices. A controller
must at least be able to initiate one process,
controller or device. (see 2.2.3 Roles, p.
13)

ConventionalPrinting This process covers several conventional
printing tasks, including sheetfed printing,
web printing, web/ribbon coating,
converting, and varnishing [27]. (see 4.2.2
ConventionalPrinting, p. 23)

Device A Device is capable of executing the
information it receives from an Agent or a
Controller. Devices must be able to
execute JDF Nodes and initiate its
underlying machine. (see 2.2.3 Roles, p.
13)

Machine A machine is any part of the workflow
system designed to execute a process. Most
often, this term refers to a piece of physical
equipment, such as a press or a binder, but
it can also refer to the software components
used to run a particular machine. (see 2.2.3
Roles, p. 13)

47 (57)

Management Information System (MIS) The Management Information System is
controlling and overseeing the complete
workflow and its units. It is also
responsible for monitoring the progress of
the job. The MIS can do this via JMF or by
information from the JDF Nodes audits.
(see 2.2.3 Roles, p. 13)

Manager The software that implements the Manager
Interface. (see 2.2.3 Roles, p. 13)

Manager Interface The interface that sends JDF Instances and
JMF messages to a Worker in a Device or a
Controller. (see 2.2.3 Roles, p. 13)

Plate making The process of making the plates ready to
be used in a printing press.

Postpress The process involved after printing such as
packing, laminating, and hole making.

Preflighting Preflighting is the process of examining the
components of a print job to ensure that the
job will print successfully and with the
expected results [27].

Prepress The processes involved before the media
goes to print. Examples are
ColorCorrection, Scanning, and
Preflighting.

Rendering Rendering is the process of generating an
image from a model, by means of a
software program. [49]

RIPing (Raster Image Processing) The process of rasterizing pages before
going to print.

Worker The software that implements the Worker
Interface. (see 2.2.3 Roles, p. 13)

Worker Interface The interface that receives JDF Instances
and JMF messages from a Manager in a
Controller or a MIS. (see 2.2.3 Roles, p.
13)

48 (57)

11. Appendix C: The author’s programming
contributions

This appendix explains in more detail what programming tasks have been solved by the
author.

I have only contributed to the project’s conformance to the Base ICS. I have not invented
the overall design; this was made by Claes Buckwalter.

For each task a reference to a package is given where the task was implemented. The
amount of code I have contributed to the project can be found in Appendix D: Code
statistics for Elk.

11.1. KnownDevices Message
Code in package: org.cip4.elk.impl.jmf
The KnownDevices message is sent to a worker (ERI) to get information about the
device, what tasks it can perform and which processes it handles. It may also return
information of the Device’s current state. If the device is currently processing a job the
JobPhase element is also returned. The JobPhase contains information of the status of the
device, such as a percentage of the total amount of sheets to print. For the KnownDevices
message to conform to Base ICS, I had to implement the DeviceFilter attribute from the
JDF Specification, which specifies what information should be returned.
Problems to solve:
 How do I get the status of the Device (i.e the JobPhase element)?
 How do I implement a DeviceFilter in an object oriented way?

Since Elk is a multi-threaded application and the Process is executing its jobs in a
separate thread I had to include the Process in the constructor of the KnownDevices class.
The process is injected during startup of the application by the Spring container.
Furthermore I needed to implement methods for accessing the JobPhase element of
org.elk.impl.device.process package.

I implemented a BaseICSDeviceFilter to filter the device information returned
according to the Base ICS. The BaseICSDeviceFilter implemented the interface
DeviceFilter which I also developed and which is further explained in Strategy pattern
on p. 32.

11.2. JDF Preprocessing
Code in package: org.cip4.elk.impl.jmf.preprocess
Here the problem was to investigate the need for JDF pre processing and the actions to be
taken in the preprocessing state. The reason for pre processing is to avoid incomplete, not
runnable or non handled JDF jobs to end up in the device’s queue.

49 (57)

I came up with a sequential solution where the JDF job is checked for validity in the
order of that in Figure 5.9 JDF Preprocessing steps, p. 36.

11.3. Subscriptions functionality
Code in packages: org.cip4.elk.impl.subscriptions,
org.cip4.elk.impl.jmf.preprocess, org.cip4.elk.device.process

The implementation for handling subscriptions had certain limitations before I started
working on it. It only supported event-based subscriptions and did not handle
subscriptions asynchronously. The subscription mechanism was implemented in the
SimpleSubscriptionManager class. Some additional features that was required from the
assigner:

- Support for Time-based Subscriptions
- Subscribing through JDF/NodeInfo
- Handle subscriptions asynchronously

In accomplishing this I developed a separate package to handle the new features,
org.cip4.elk.impl.subscriptions (see Figure 5.1 Overview of the subscriptions
package, UML, p. 28). To handle the time-based subscriptions an inner java class
extending the java TimerTask class was developed in the BaseICSSubscriber.

The enabling of subscriptions through the JDF/NodeInfo element was most appropriately
implemented in the SimpleJDFPreprocessor. The preprocesser initiates a subscription
after the JDF Node had been checked with the preprocessor. The BaseProcess also had
to be extended to be able to cancel a subscription once the processing of a node was
finished.

11.4. Asynchronous processing
In order to make the Elk device work properly I had to implement asynchronous handling
of incoming and outgoing JMF messages partly to prevent deadlocks. Another
requirement was to handle the AcknowledgeURL attribute of a JMF/Command element.
This is stated in the Base ICS documents and informs submitter of a JDF or another
incoming command that the device (Elk) has received the message and that it will process
it.

I investigated different ways to implement these features and looked at Sun’s Java
Message Serivce (JMS) API [23]. Another thing I looked at was Mule[44], which is light
weight framework for asynchronous messaging. I implemented the above features using
Mule, but it turned out that it added more complexity and weight than desired. The
current version of Elk is using the util.concurrent v. 1.3.4 [46] package. Also see section
5.7 Asynchronous processing, p. 33 for more information.

11.5. ConventionalPrinting process
Code in package: org.cip4.elk.impl.device.process

50 (57)

Before I started to work on the Elk project only the Approval process was implemented.
To make Elk more useful a simulation device of print production workflow the
implementation of a printing press was a desired functionality. In implementing the
ConventionalPrinting process this functionality was accomplished. A printing press
produces printed sheets and the programming tasks involved with this was to implement
the handling of Amount events, the subscription of Amount events. The problems arisen
with this was implemented in an object oriented way earlier described in
5 Program Design, Concepts and Development on p. 25.

11.6. Additional features
A lot of other functionality was also added in order to make Elk conformant to the Base
ICS. A relatively detailed specification of the code I contributed to the project can be
seen in Appendix D: Code statistics for Elk, below and it can also be browsed online at
[13], in the link project reports, source Xref.

Some of the additional features that was implemented:
In the org.cip4.elk.impl.jmf package:
KnownMessages/MsgQuParams
StopPersistentChannel to be base ICS
SubmissionMethods message
QueueEntryDetails

Other features that were implemented that involved modifications across packages were:

- Processes
o Follows JDF/NodeInfo/TargetRoute
o Improved Audit information
o Bug fixes

- SubmitQueueEntries asynchronously
- AcknowledgeURL for SubmitQueueEntry.
- Automated testing.
- Refactoring, bug fixes.

These features were all solved in the object oriented fashion explained in section Program
Design, Concepts and Development on p. 25.

11.7. Time consumption
The first two-three months I was reading and learning the concepts of XML and JDF. I
also spent a lot of time throughout the thesis period to learn the basics of the printing
industry. I was also looking into Spring and dependency injection strategies to understand
how the Elk application was run. I had to understand and learn the basics of the Apache
Tomcat server, the Ant-build tools and gather knowledge in the Eclipse IDE. When
implementing asynchronous processing I was looking into JMS, Mule and java.util
packages. Furthermore I got acquainted with different tools for developing UML
diagrams such as gentlware’s Poseidon for UML [21] , Smart Draw [51] and such. A lot
of the programming involved changing and expanding existing code and these

51 (57)

improvements were carried out throughout the whole thesis period. I started to contribute
to the project a little earlier than what is shown in CVS because I did not have my CVS
account ready until the beginning of May. The primary programming tasks, which took
about one month each were in these categories: Asynchronous programming (Mule, JMS,
etc.), Subscription package, pre processing and the Conventional printing. Alongside with
these the other additional features were implemented.

52 (57)

12. Appendix D: Code statistics for Elk

12.1. Project totals
Author Lines of Code
buckwalter 34352 (69.7%)

ola.stering 13525 (27.4%)

markus.nyman 954 (1.9%)

prosi 444 (0.9%)

12.2. Lines of Code

12.3. Ola Stering’s contributions
Elk Developers: ola.stering
Login name: ola.stering
Total Commits: 310 (29.5%)
Lines of Code: 13525 (27.4%)

53 (57)

12.3.1. Activity in Directories (Ola Stering)

Directory Changes Lines of
Code

Lines per
Change

Totals 310
(100.0%)

13525
(100.0%) 43.6

src/java/org/cip4/elk/impl/device/process/ 32
(10.3%)

2325
(17.2%) 72.6

src/java/org/cip4/elk/impl/subscriptions/ 23 (7.4%) 1768
(13.1%) 76.8

src/java/org/cip4/elk/impl/jmf/util/ 8 (2.6%) 1031
(7.6%) 128.8

src/java/org/cip4/elk/impl/jmf/preprocess/ 6 (1.9%) 857 (6.3%) 142.8

src/java/org/cip4/elk/impl/queue/ 13 (4.2%) 753 (5.6%) 57.9

src/test/org/cip4/elk/impl/jmf/ 14 (4.5%) 706 (5.2%) 50.4

src/test/data/ 21 (6.8%) 555 (4.1%) 26.4

src/java/org/cip4/elk/impl/jmf/ 11 (3.5%) 524 (3.9%) 47.6

src/java/org/cip4/elk/impl/servlet/ 4 (1.3%) 502 (3.7%) 125.5

src/test/org/cip4/elk/impl/subscriptions/ 5 (1.6%) 496 (3.7%) 99.2

src/test/org/cip4/elk/impl/device/process/ 3 (1.0%) 474 (3.5%) 158.0

src/java/org/cip4/elk/device/process/ 9 (2.9%) 468 (3.5%) 52.0

src/devices/ConventionalPrinting/ 1 (0.3%) 388 (2.9%) 388.0

src/java/org/cip4/elk/impl/queue/util/ 3 (1.0%) 302 (2.2%) 100.6

src/test/org/cip4/elk/impl/jmf/preprocess/ 4 (1.3%) 298 (2.2%) 74.5

src/test/org/cip4/elk/impl/jmf/util/ 4 (1.3%) 265 (2.0%) 66.2

src/test/org/cip4/elk/testtools/servlet/ 1 (0.3%) 263 (1.9%) 263.0

src/test/org/cip4/elk/impl/device/ 3 (1.0%) 240 (1.8%) 80.0

src/java/org/cip4/elk/impl/util/ 2 (0.6%) 186 (1.4%) 93.0

src/test/org/cip4/elk/jmf/servlet/ 2 (0.6%) 169 (1.2%) 84.5

src/test/org/cip4/elk/impl/queue/ 7 (2.3%) 156 (1.2%) 22.2

src/java/org/cip4/elk/impl/queue/jmf/ 10 (3.2%) 148 (1.1%) 14.8

src/java/org/cip4/elk/impl/device/ 8 (2.6%) 126 (0.9%) 15.7

src/test/org/cip4/elk/impl/queue/util/ 4 (1.3%) 110 (0.8%) 27.5

src/test/org/cip4/elk/impl/util/ 2 (0.6%) 104 (0.8%) 52.0

src/java/org/cip4/elk/impl/device/jmf/ 3 (1.0%) 86 (0.6%) 28.6

src/test/org/cip4/elk/ 2 (0.6%) 82 (0.6%) 41.0

54 (57)

Directory Changes Lines of
Code

Lines per
Change

src/java/org/cip4/elk/ 4 (1.3%) 71 (0.5%) 17.7

src/test/org/cip4/elk/impl/jmf/mime/ 1 (0.3%) 35 (0.3%) 35.0

src/java/org/cip4/elk/queue/ 5 (1.6%) 28 (0.2%) 5.6

/ 2 (0.6%) 8 (0.1%) 4.0

src/java/org/cip4/elk/impl/ 1 (0.3%) 1 (0.0%) 1.0

src/test/data/jdf/ 91
(29.4%) 0 (0.0%) 0.0

src/devices/Approval/ 1 (0.3%) 0 (0.0%) 0.0
Statistics generated by StatCVS 0.3

55 (57)

13. References
[1] Abstract factory pattern [Online]. Available:

http://en.wikipedia.org/wiki/Abstract_factory_pattern [Sep 2006]

[2] Alces [Online]. Available: http://elk.itn.liu.se/alces/ [Sep 2006]

[3] Apache Ant [Online]. Available: http://ant.apache.org/ [Sep 2006]

[4] Apache Tomcat [Online]. Available: http://tomcat.apache.org/ [Sep 2006]

[5] Base ICS [Online]. Available:
http://www.cip4.org/document_archive/documents/ICS-Base-1.0RevB.pdf [Sep
2006]

[6] Bergman, Michael. JDF design approaches with implementation in a Management
Information System. Master of Science thesis in Information Systems and Database
Technology. Royal Institute of Technology, Stockholm, Sweden, 2005.

[7] Bloch. Effective Java, Programming Language Guide. Addison-Wesley, 2004, ISBN:
0-201-31005-8

[8] Buckwalter, Claes. A JDF-enabled Workflow Simulation Tool, Proceedings TAGA
2005 Conference, Toronto, Canada.

[9] Command pattern [Online]. Available:
http://en.wikipedia.org/wiki/Command_pattern [Sep 2006]

[10] Cruise Control [Online]. Available: http://cruisecontrol.sourceforge.net/ [Sep
2006]

[11] CVS [Online]. Available: http://www.gnu.org/software/cvs/ [Sep 2006]

[12] Eclipse SDK [Online]. Available: http://www.eclipse.org/ [Sep 2006]

[13] Elk [Online]. Available: http://elk.itn.liu.se/ [Sep 2006]

[14] Enterprise JavaBeans Technology [Online]. Available:
http://java.sun.com/products/ejb/ [Sep 2006]

[15] Enterprise Service Bus [Online]. Available:
http://en.wikipedia.org/wiki/Enterprise_Service_Bus [Sep 2006]

[16] Event listener [Online]. Available: http://en.wikipedia.org/wiki/Event_listener
[Sep 2006]

[17] Extreme programming [Online]. Available:
http://en.wikipedia.org/wiki/Extreme_Programming [Sep 2006]

[18] eXtreme programming [Online]. Available:
http://www.extremeprogramming.org/ [Sep 2006]

[19] Fowler, Martin. UML Distilled Third Edition, a Brief Guide to the Standard
Object Modeling Language. Addison-Wesley. 2004. ISBN: 0-321-19368-7

[20] Inversion of Control Containers and the Dependency Injection pattern [Online].
Available: http://www.martinfowler.com/articles/injection.html [Sep 2006]

56 (57)

[21] Gentlware, Poseidon for UML [online]. Available: http://www.gentleware.com/
[March 2007]

[22] Iterative and incremental development [Online]. Available:
http://en.wikipedia.org/wiki/Iterative_development [Sep 2006]

[23] Java Message Service (JMS) [Online]. Available:
http://java.sun.com/products/jms/ [Sep 2006]

[24] Java Servlet Technology [Online]. Available:
http://java.sun.com/products/servlet/overview.html [Sep 2006]

[25] Java Tip 68: Learn how to implement the Command pattern in Java [Online].
Available: http://www.javaworld.com/javaworld/javatips/jw-javatip68.html [Sep
2006]

[26] Javadoc Tool [Online]. Available: http://java.sun.com/j2se/javadoc/ [Sep 2006]

[27] JDF 1.2 Specification [Online]. Available:
http://www.cip4.org/documents/jdf_specifications/JDF1.2.pdf [Sep 2006]

[28] JDF ICS documents [Online]. Available:
http://www.cip4.org/document_archive/ics.php [Sep 2006]

[29] JDF Windows Editor [Online]. Available:
http://www.cip4.org/open_source/jdfeditor-2.1.3.36-win.zip [Sep 2006]

[30] JDFLib-J API [Online]. Available:
http://www.cip4.org/open_source/doc/jdf_java/ [Sep 2006]

[31] JDom [Online]. Available: http://www.jdom.org/ [Sep 2006]

[32] JIRA [Online]. Available: http://www.atlassian.com/software/jira/ [Sep 2006]

[33] Johansson, Lundberg, Ryberg , Grafisk kokbok 2.0, FörlagKOKO, ISBN
9178431611

[34] JUnit [Online]. Available: http://www.junit.org/index.htm [Sep 2006]

[35] JUnit Test Infected: Programmers Love Writing Tests [Online]. Available:
http://junit.sourceforge.net/doc/testinfected/testing.htm [Sep 2006]

[36] Kernighan, Brian W, Pike, Rob. The practice of programming. Addison-Wesley.
1999. ISBN: 0-201-61586-9

[37] Liljegren, Gustav. XML – begreppen och tekniken, Studentlitteratur 2004, ISBN
9144024762

[38] Liskow, Guttag. Program Development in Java. Addison-Wesely, 2001, ISBN: 0-
201-65768-6.

[39] Log4j project [Online]. Available: http://logging.apache.org/log4j/docs/ [Sep
2006]

[40] Logging in Java Applications [Online]. Available:
http://www.developer.com/java/other/article.php/1404951 [Sep 2006]

[41] McLaughlin, Java & XML, O'Reilly Media, 2001, ISBN 0596001975

57 (57)

[42] Medbo, Anders. How to become profitable with JDF. Presentation. Grafex 2005.

[43] MIS ICS [Online]. Available:
http://www.cip4.org/document_archive/documents/ICS-MIS-1.0RevA.pdf [Sep 2006]

[44] Mule [Online]. Available: http://mule.codehaus.org/ [Sep 2006]

[45] Observer pattern [Online]. Available:
http://en.wikipedia.org/wiki/Observer_pattern [Sep 2006]

[46] Overview of package util.concurrent Release 1.3.4. [Online]. Available:
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html [Sep
2006]

[47] Packaging Programs in JAR Files [Online]. Available:
http://java.sun.com/docs/books/tutorial/deployment/jar/ [Sep 2006]

[48] Refactroing [Online]. Available: http://www.refactoring.com/ [Sep 2006]

[49] Rendering [Online]. Available:
http://en.wikipedia.org/wiki/Rendering_(computer_graphics) [Sep 2006]

[50] Singleton pattern [Online]. Available:
http://en.wikipedia.org/wiki/Singleton_pattern [Sep 2006]

[51] Smartdraw. [Online]. Available: http://www.smartdraw.com/ [March 2007]

[52] Software testing [Online]. Available:
http://en.wikipedia.org/wiki/Software_testing [Sep 2006]

[53] Spring Framework [Online]. Available: http://www.springframework.org/ [Sep
2006]

[54] Strategy for success [Online]. Available:
http://www.javaworld.com/javaworld/jw-04-2002/jw-0426-designpatterns.html
[Sep 2006]

[55] Strategy pattern [Online]. Available:
http://en.wikipedia.org/wiki/Command_pattern [Sep 2006]

[56] The International Cooperation for the Integration of Processes in Prepress, Press
and Postpress (CIP4) [Online]. Available: http://www.cip4.org [Sep 2006]

[57] Web Application Archives [Online]. Available:
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html [Sep 2006]

[58] Xerces [Online]. Available: http://xerces.apache.org/ [Sep 2006]

